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Ahslract. A sy-stematicanalysisofthe spectral moments method is presenred anddeveloped 
to compute the  response functions of very large harmonic systems. Convergence of the 
algorirhms is discussed and solutions are proposed to improve lhe results obtained. New 
developments are proposed. They concern, on the one hand, thedetermination ofthe Green 
funcrionsorcorrelarion functions ofthe system, and the localizationofeigenvectors and. on 
theotherhand. thedeterminationofthespectraldensityofvery large homogeneousmatrices 
by a very simple and powerful technique. These results are illustrated by several examples 
taken from the main subjects studied by rhe aurhors: conducting polymers. fractals and 
quasi-crystals. Then comparison with other merhods is discussed. 

1. Introduction 

It is well known that, in physics, the resolution of many problems requires the deter- 
mination of eigenvalues and eigenvectors of a matrix. For instance, in quantum mech- 
anics, the energy levels and the wavefunctions are given by the eigenvalues and eigen- 
functions of the matrix corresponding to the Hamiltonian operator; in mechanics, for 
harmonic systems, the frequencies and the amplitudes of vibrations are obtained from 
the eigenvalues and eigenvectors of the dynamical matrix. If the system is not ordered 
as a crystal, the matrices can be very large and the usual methods fail to determine these 
quantities. 

In several publications, we have shown that the moments methods are a powerful 
toolforthestudyofthedynamicalpropertiesof solids. Inthispaper,after a briefreview. 
we will present the different techniques we used to obtain either the response functions 
of the system, the correlation functions, or the spectral density. In conclusion, we 
compare this method to the recursive method, which is somewahat similar. 

To investigate the properties of a system, we generally apply a harmonic pertur- 
bation. The response of the system is then characterized by a function of the frequency 
of the perturbation: it is either a generalized susceptibility (dielectric susceptibility. 
magnetic susceptibility. elastic constants, conductivity) or a differential scattering cross 
section. 

It appeared of interest to calculate the moments of this response versus frequency 
(or energy transfer) directly from the Hamiltonian of the system. For instance, in 
magnetic resonance, the first and second moments of the imaginary part of the magnetic 
susceptibility are calculated (Abragam 1961). The great advantage comes from the 
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fact that moments are related to the trace of operators. which is independent of the 
representation, thus circumventing the insoluble problem of finding the eigenstates of 
the total Hamiltonian. The higher moments are rather complicated functions of the 
Hamiltonian and they are difficult to determine with this type of method. However. 
many applications have been developed concerning the study of optical spectra (F 
centre; Henry and Slichter 1968). atomic photoabsorption. electron-atom scattering, 
nuclear level density and photoeffect studies (Dalton er a/ 1979). In these problems, i t  
is necessary to work with a finite subset of a complete discrete set of square integrable 
(L:) functions to discretize the Hamiltonian of the system. Brownian motion and 
Markovian processes have also been studied by moments techniques in classical mech- 
anics (Dupuis 1967. Scheunders and Naudts 1990). 

I n  solid-state physics the moments methods have been developed by Cyrot-Lack- 
mann (1967), Gaspard and Cyrot-Lackmann (1973). Lambin and Gaspard (1982). 
Turchi ef ol(1982) and Jurczek (1985) for studies of electronic properties. They used the 
continued fraction expansion of the density of states. Up to Jurczek, the difficulty was 
to determine exactly the values of the coefficients of the continued fraction. Jurczek 
(1985) found a very simple iterative method. which is identical to the Stieltjes (1884) 
and thechebyshev (1858)algorithms. Forharnionicsolids,amomentsmethodwasused 
first by Montroll(1942) to calculate the density of one-phonon states. The method was 
improved by Blumstein and Wheeler (1973) and Wheeler er al(1974). However, few 
works concern the direct determination of the response functions of the system. Only 
Gordon (1968) considered the first moments of the Raman and infrared specua mol- 
ecular systems. In dynamics of condensed matter, the possibility to determine directly 
theresponsefunctionsfrom the Hamiltonianwaspointedoutfor the first timeby Galtier 
and Benoit (1981). Four years ago we developed a method based on the moments 
techniques that permits one to calculate the physical properties of very large disordered 
systems. The aim of this paper is  to present the mathematical and computing aspects of 
this method. which we have called the spectral moments method as we calculate the 
moments of the spectral response of the system. We report also new developments such 
as the calculation of correlation functionsand the spectral densityof the matrix. Finally. 
we will discuss the accuracy of our technique. 

The first point to be mentioned is that. generally. for systems without any particular 
symmetryproperties. it is necessary to determine all eigenvalues and all eigenvectors of 
the dynamical matrix A of the system for which we wish to calculate the physical 
properties: optical spectra. conductivity, scattering properties and so on. The second 
point concerns the experimental data. Usually the experimental results are smoothed 
by the apparatus function or by the sensitivity of the detector and so do not involve the 
exact mathematical value of all eigenvalues and eigenvectors. especially for very large 
systems. 

The only information that we need to obtain, with the best accuracy, is the number 
of eigenvalues, with the exact physical activity. which are in a very small spectral interval. 
If  we call A> the ith eigenvalue of the matrix A .  we are chiefly interested in the best 
determination of the function d(u) du, which gives the number dN of eigenvalues A, 
between LI and U + du. This function can be written 

Weconsiderhere thesystem withfiniteordermatrix,sothat thenumberofh,isbounded. 
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The direct determination of (1) for very large matrices is very difficult. If we are 
interested only in larger eigenvalues and their corresponding eigenvectors, power 
methods with deflation procedure can be used (Saad 1981). However, it  should not be 
used tocompute more than a feweigenvaluesand eigenvectors. Other methods (Lanczos 
1950, Saad 1980) are based on projection techniques, both orthogonal and oblique, onto 
Krylov subspaces, i.e. subspacesspanned by the iterates of the power method. The well 
known iterative procedure (Haydock era/ 1972, Haydock 1980) developed in solid-state 
physics is an application of these general techniques. These methods give a projected 
spectral density. We discuss in the last part of this paper their relations with the spectral 
moments method. 

In physics only few experiments provide the spectral density directly; rather, the 
experimental results are connected to the 'linear response' of the system, which is given 
by the function (Born and Huang 1956): 

and 

/ d  (4) d' = 
I 

where qr and pt are coefficients that are supposedly known from the physical problem. 
Let us recall that we are concerned by dynamical properties: generally the response 
function should be more complicated. In (3) is the ith component of the jth eig- 
enfunction of A :  

where the a,,. are the elements of matrix A .  We will see that the determination of (2) is 
much easier than the calculation of (1) and, furthermore, with some improvements, 
allows one to compute with good accuracy the spectral density (1 ) .  

We now begin to develop the spectral moments method. Then we will show how i t  
allows one to determine the correlation functions or the Green functions of the system 
and finally we will study the way to obtain the spectral densi ty. Weillustrate these various 
points with several examples. 

2. Moments method 

I n  this section we present the main results that are used in the moments techniques. The 
detailedproofscan be found inStieltjes(1884,1894), Wall (1948).ShohatandTamarkin 
(1963), Akhieser (1965), Jones and Thron (1980), Benoit (1987,1989) and Benoit and 
Poussigue (1989). 
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2.1. Srieltjes inversion formula 

Let us consider a function C(u) that is positive and not decreasing. If G(u) is bounded 
and non-decreasing on the interval -B  < K < +@, then C(u) isdetermined. except for 
an additive constant, at all its points ofcontinuity. by the formula 

with z = U + is and where 

R(r)  is called the Stieltjes transform of C(u) and converges absolutely and uniformly. 

2.2. Generalized moments 

Let us now consider a function g(u) that is positive on an interval (a, 6) .  Following 
Stieltjes, it is always possible to determine a polynomial Q,,(K) of given degree n with 
the conditions 

g(u)  Q,,(u) U' du = 0 (k  = 0.1.2.. . . .n - 1). (8) 

The polynomials Q,,(u) obey the following recurrence law: 

Q.+,(u) = ( 1 ~  - a, , , )  Q&) - ~,Q,-J(LO 

Q -  I (U) = 0 and e,,@) = 1 (96) 

( 9 4  

with 

and where 

aIx+l = & n / ~ , , n  (10) 

and 

h,, = vnn/vn- i . f l - i  (11) 

with 
b 

vnn = lo g(u) Q,@) Q J u )  du 

lVV" = Job g(u) Q , ( r { )  Q.b) U du. 

(12) 

and 

(13) 

The quantities vnn and f in" are called generalized moments. We will see that these 
quantities can be determined directly from the elements of the matrix A. 
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2.3. Continued fractions 

The function R(z)  defined in (7) can be developed as a continued fraction: 
1 

(14) PI R ( z )  = 
z - - 0 l 1 -  

B 2  z - - a . , -  
2 - cl-. . . 

I t  is well known that a continued fraction is a limit of a fraction of polynomials, and one 
obtains 

It is possible to show that for a function g(u) that is positive on an interval ( a ,  b),  such 
that 

g(u) = dG(u)/du (16) 

Rn(2) = e ,cz ,  (17) 

-a.,, = a,, and B,, = b,, for all n. (18) 

so that 

Thedetaileddemonstrationsofthesestatementshave beensummarized inRoyer (1989). 
Equations (5)-(IS) are the basisof the moments method. 

3. Spectral moments method-response functions 

3.1. General form 
Let usnow considerthe special formoff(u)given inequation (2) withq, = p,. Nowf(u) 
is a positive function g(u) everywhere. From the equation: 

1 E  
S(x) = lim -- 

e-U+ X X 2  + E? 

we obtain 

with z = U t ie. Now ifwe substitute the form (2) (with q, = p,) directly in ( 7 )  with (16), 
we obtain 

and with (20) and (21) we obtain 

g(u) =  IT) lim Im R ( z )  
t-o+ 

So the inversion relations (6) are easily demonstrated with this particular form (20) for 
g(u). 
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Our iiim is to work with a large but finite-order matrix. So the number ofeigenvalues 
is finite and from (2) 

where N is the order of the matrix. In this case the continued fraction is finite. This can 
be proved in the following manner. From (IS) and (17) we know that 

Following Stieltjes (1884. 1894) the polynomial Q,?(z) has I I  distinct roots, so that 

e,,(.) = (2 - z l ) ,  
)=I  

The roots of Pt,-l(z) being different from 2,. equation (24) can be developed in simple 
fractions 

Comparison with (21) where the summation is finite shows that zI = A, and IW, = 
(c,, cI) (usual scalar product) and that the continued fraction is finite. However. it has 
been shown by Stieltjes that the roots of the polynomials QJz) are non-degenerate. and 
a problem appears if some eigenvalues A, are degenerate, Let us suppose that A i  = A;. 
Then (21) can be written as 

c;c, + CTC? 
: - A ,  R(z)  = 

Comparison with (26) shows that now R ( z )  presents rz - 1 poles and Q,,(z) must be of 
degree ( n  - 1) ( =Q,,.I(z)) with 

M I -c : *  - I C I  + c ; c ,  (28) 

MI = c:c, J=3,4 . . . . ,  N .  (2% 

and 

Now let us consider the situation where some coefficients c, are equal to zero. The 
number ofdistinct terms in (21) decreasesand from equations(26) and (77) the degree of 
the polynomials Qq(z)  also decreases. So the number of non-zerogeneralized moments is 
equal to the number of distinct eigenvalues with non-zero c, coefficients. This is an 
important result for the moments method. 

In conclusion, the determination of the coefficients U,, and b,, ((10) and ( I  1)) allows 
the exact calculation of the function R(r)  (14) wirh the help of (18) and the exact 
determination of.g(u) by equation (22). The coefficients u , ~  and b. are determined with 
the help of the generalized moments v,,,, and V,,,, ((12) and (13)). The problem consists 
of determining these coefficients without knowledge of the function ~ ( l c ) .  directly from 
the Hamiltonian or from the dynamical matrix. 
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3.2. Computing aspects 

Tocompute the linear response (23) we substituteg(u) from (23) into (12) and (13). Let 
usconsiderfirst the moment U,,,>. With the helpof theclosure andorthogonalityrelations 

2 e;: e,). = 6,. (30) 

With Qu(A) = I (identity matrix). one obtdinsdirectly v,,,,and i,,,,from (32) and(33) 
and from the relation (9). one obtains 

Q t ( A )  = ( A  - a t 0  (34) 
and thus v ,  I and V I  I and so on. 

In practice, we do not work with the matrices but with a vector t'"'such that 

= 2 [Q,,(A)I/A,. (35) 

Taking into account the relation (9). one obtains the following recursion formula for the 
vectors t("! 

(36) t i r l i I )  = (A - a,,+lI)tlt8) - b [tbr-t), 

The generalized moments are then given by 

v,,,r = ( t " . t " )  (37) 
and 

V,,,, = ( t " , A f " ) .  (38) 
We only need to store two vectors to compute all the generalized moments. Fur- 

thermore, we use a special method of storage for the matrix, A,  which is often sparse: 
the non-zero elements are stored in a vector, while two tables give information on the 
indices; the first one gives the column of the element while the second table indicates 
the total number of non-zero elements at the end of every line. Codes for vector and 
matrix, matrix and matrix and triple matrix products have been constructed using 
vectorial and parallel programming. In other respects we have seen that the number of 
moments will be equal to the number of non-zero terms with distinct eigenvalues in 
equation (23). In many physical problems, only a few eigenmodes have a non-zero 
coefficient: for instance, for the infrared absorption in MgF, crystal only four modes (of 
the N -  loz3 modes) are infrared-active. The computation of the a,! and b, will stop 
exactly after the fourth moment, which means b4 = 0. 

In practice, a test is inserted and the computation stops when b,, is smaller than a 
given value Now, when we compute physical propertiesofstrongly disordered 
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materials or the spectral density, all eigenmodes will contribute more or less and it 
should be necessary to compute all the moments. This is not possible and in practice we 
determine a finite number of moments. Let us show why a good result is obtained. 

aI bl!? 0 
bl-2 

J t = [  0 " . : b!$- ' I 

. b:!:-ia,rc - 

3.3. Jacobi matrix 

From a,, and b, we construct the matrix (Whiteheap in Dalton e ta f  1979): 

- .  

p m  = I u"g(u) du (42) 

are the moments of the response function, then it  is easy to show that 

~ 8 ,  = I J " I i i  =[J: ' I , i .  (43) 
Hence truncating the full Jacobi matrix to any order produces a solution such that its 
2n - 1 independent moments agree exactly with the first 2n - 1 moments of the exact 
solution. This result isof utmost interest. 

However. in many problems, a sharp truncation causes the appearance of sharp lines 
in the calculatedspectrum (see illustrationsof spectral density). So. even if the calculated 
spectrum is such that its first 2n - 1 moments agree exactly with the first 2n - 1 exact 
moments, it is necessary to study very carefully the truncation of the continued fraction 
to obtain a good solution. 

7.4. Infinite [ai! 

Let us call R(z)  the exact value obtained with the total N ,  moments that we suppose are 
all known and R C ( z )  the value obtained with the n, practically calculated moments. We 
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have seen that N,, can be different from the order Nof the matrix ( N ,  < N ) .  One obtains 
after reduction of the continued fraction (14) 

R(z)  = PN~-I(z)/QN,(z) (44) 

R E ( z )  = P,rc-~(z)/Q,2c(z). (45) 
and for the computed value of Rc(z) ,  

It is possible to show that the following relation holds (Shohat and Tamarkin 1963): 

P k - i / Q k =  PK-z/QI;-I + bi ' .  . b h - i / & k - i Q h .  (46) 
Using (44). (45) and (46) one obtains with n, < N ,  

The second term on the right-hand side of relation (47) represents the 'error' that is 
made when we cut the continued fraction. To decrease this error, a function ~ ( z )  is 
introduced that represents the effect of the cut tail (often called infinite tail in the limit 
N - ,  =); ~ ( z )  is given by 

- a,,c+ I - 
bnF+2 

2 - Q,lC+2 - 
~ N ~ - I  

z - a,,c+, . . . - - 
2 -  a N p  

and is unknown. Now if we conjecture a form for ~ ( 2 ) .  one obtains for the calculated 
value of R c ( z )  after reduction: 

As we shall see later, the choice of the form of the function p ( z )  is not trivial. 
The problem of the convergence of continued fractions has been studied at length 

(Wall 1948). We report here the main results. For a fixed z (Im z > 0) the relation (49) 
maps the real axis of rp(z) into the circumference of a certain circle C,,(z) situated in the 
lower half-plane Im R(r)  < 0 in such a way that the points of the half-plane Im q ( z )  < 0 
are mapped onto the interior of this circle. The circle C,,(z) decreases, as n increases, in 
such a way that CJz) is inside C,z-l(z) and touches C,(z) from the inside. The radius of 
C,(z) is given by 

rnc ( z )  = P"c-l/2& (50)  
with 

It is possible to show that the general form for ~ ( z )  is 
l + r z  

~ ( z ) = A r + c +  

where a(r) is a bounded increasing function, A and c are real constants and A s 0 
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The radius of CJz) decreases when thc imaginary part of z increases. However, if 
we increase E .  we decrease the resolution of spectral density or of the response function. 
Usually E is taken as a constant. However, for some problems in mechanics or in self- 
similar systems it is interesting to plot the spectrum in U'{' or in log(u"'). Then it is not 
possible to keep f constant over all the spectrum and in practice E is taken as a function 
of U .  the width of the peak being a constant in linear (square root or log-log) plotting. 

Some properties of the function q ( r )  can be derived directly by analysing the 
behaviour of the coefficients a,, and b,,: 

( i )  When we are dealing with the function (21). where the number of non-zero 
coef~cientsc,islow.theformof$?(r)isnotveryimportant if wecomputeagreatnumber 
of moments. 

(ii) Problem of the tail in solid-state physics has been studied (Gaspard and Cyrot- 
Lackmann 1973. Turchi er al1982). In  the presence of a gap the coefficients a,, and b,, 
exhibit undamped oscillations: 

a,, = a + (-  1)"6a and b , , = b + ( - I j " 6 b  ( 1 1  large). (53 )  
The tail p-(r) is given by 

~ ( z )  = - [CY z (a.? - 4p+/3-b')'"];'Z/j- 

n = 26b - /3'/3- and B ' = z - a =  (55) 

(54) 
with 

and 

a.  = a i 6 a  and 6' = b 2 6b. (56) 
We used this type of tail in all the work done until now with the moments method. It is 
interesting to note that the effect of the tail depends strongly on the studied problem. 

(iii) I t  is possible to generalize the method and to study the oscillations of the tail if 
the number of calculatcd moments is large enough. To do that we studied the Fourier 
components of the coefficients a,, and b,,. If these coefficients exhibit oscillations with 
the larger period m. 

a,, = a,,+, and 1.n = bu+m (57) 

then the tail will be given by 

$ ? " J y Z )  = 

J _  - _  e a,l-> - .  . . 
L arc+", - Lp"'(z)  

The solution of (58) is straightforward. Using the same relation as for (49) one obtains 

(59) @"." ' (z )  = [ P r , - l ( z )  - P4,-2(z)~". ' " ] I ' [P~,(z)  - Q,$-I(z)p"."'] 

with 

and 
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From (59) one obtains 

p"."(z) = [PP;-'(z) + Q:; (z )  i: { [& ' ( z )  + Qr(z ) ] '  

- ~ Q L I ( ~ ) P $ - I  ( z ) l i " l / 2 Q % - ~ ( z )  (62) 

From the knowledge of the coefficients a,, and b,, ( n ,  - m + 1 S 11 s t i c )  the poly- 

Let us note that the infinite tail can be complex even with a real variable z. For 

(63) 

which generalizes the expression (54). 

nomials and the tail of the continued fraction are computed 

instance with a,, = a and b,, = b whatever t~ 2 ne one obtains 

q(z)  = { z  - a  2 [ ( z  -a) '  - 4b]'!']/2 

Re z < Z d g  - a 

which is complex for 

(641 
in  the limit E going to zero. Tail (63) gives an exact result. 

There is no special reason for a particular periodic behaviour. For instance, in  the 
quasi-periodic systems these coefficients follow a rather complicated law. 

Illustrations will be discussed later principally for the determination of the spectral 
density. As we have already noted. the problem of the tail is generally lesscrucial in the 
determination of the response of the system. 

Let us mention some other properties of the a,r, b,*. U,, , ,  and U,,,,: 

(i) Forasimplebounded andconnectedspectrum0 < U < u,,,,itisassumed that the 
coefficients a,, and b,, have definite limits such that (Turcbi et a1 1982) 

a,, --f umz,S2 b<$-- (lJm.,J4)'. (65) 

(ii) Under change u + s u ,  the coefficients a,,. b,,, U,,,,  and V,,,, follow the scaling laws 

The change 

a,, .+a,, + V (67) 

U - U -  v. (68) 
The great advantage of the forms (54) or (62) of the tail is to respect the previous 

Inconclusion of this analysis, the following method is used in the investigation of the 

(i)  Choose the scaling factors in (66) to calculate as many coefficients a,, and b,, as 

(ii) Analyse the general behaviour of the coefficients a,, and b,t, existence of a cut, 

gives a general translation of the spectrum 

properties. 

spectrum: 

possible, taking into account the possibilities of the computer. 

divergence and so on. 
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( i i i )  Perform the Fourier analysis of the coefficients a,  and b, to study the existence 

(iv) Determine the radiusof the circle CJz) for all the spectrum and choose the best 

(v)  The function R(r) is then computed with several types of function &). 

We now report some examples of computation using these techniques. 

of the main periodicity. 

parameters. 

3.5. Illwtrations 

3.5.1.  Fibonacci chain. The first example concerns the Fibonacci chain (Benoit et a1 
1990). The matrix is tridiagonal and the values of the off-diagonal terms are obtained in 
the following procedure. The general off-diagonal terms can be generated from two 
basis elements A and B by an induction procedure as follows: 

A - r B  B-  BA. 

Stage 0 being A ,  the following sequence for off-diagonal terms is obtained: 

A -+ B + BA - BAB -+ BA BBA -+ BA BBA BAB - . . . 
so that 

a ,?  = B = A  axd = B 0 4 s  = B with air = a?, (69) 

i.e. the off-diagonal elements follow a Fibonacci sequence. For the dynamical matrix 
the diagonal elements are given by 

This system has been widely studied and is a school example for the study of quasi- 
crystals. With thismodelit is possible toderivea responsefunction (2) with thequantities 
q,(3) and p,(4) given by 

q, = el(kr,) 
Pl .  (71) 

Physically k is the sound wavevector and r, the position of the atom i. These quantities 
are assumed to be known. In such a hypothesis a peak must appear in g(u) for a known 

Figure 1. Values of the coefficients a. and b, for the Fibonacci chain, Ordcr of the 
matrix = 5702 888. 
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Figure2. Fourier transform (TF) ofthecoeificientro,,and b,, for the Fibonnccichain. Order 
of the matrix = 5702888. 

value given by the theory as a function of A ,  B and k .  The computation has been 
performed with A = 7.83 X lo3 dyne cm-', B = A / 2 .  k = 0.01 8, (see Benoit er a/ 1990 
for details). The values of the coefficients a,, and b,, are reported in figure 1. We note 
that b,  is much lower than b , ,  showing that the spectrum will present few strong peaks. 
The Fourier analysis of the a,, and h,, is reported in figure 2. We note the presence of a 
pseudo-period close to 2.5. So we have chosen a value of m = 5 in equations (57)-(62). 
Radius of the circle convergence and response function are reported in Kgure 3.  

We note that the radius is much smaller than the value of the response function. This 
result confirms the weak effect of the value of the infinite tail on the spectrum. The 
position of the low-frequency peak (upper curve in figure 3) agrees perfectly with the 
theoretical value (0.06THz). Let us note that this value is in the very low part of the 
spectrum. 

These results were obtained with a 5702 888 x 5702 888 matrix. The computing time 
on IBM 3090-600VF computer is 19 min 38.59 s. Some 334 Mb were needed for the 
computation of 80 generalized moments. Computing time is linear with the order of the 
matrix. However, the calculation shows that computation with a shorter chain ( N  = 
10 947) gives good results. 

In order to test the accuracy of the whole spectrum obtained (which is not reported 
here), we have calculated by direct integration the first moments of the spectrum. Let 
us recall that the form of this spectrum normally depends on the choice made for the 
tail. The results are reported in table 1 and show the excellent agreement obtained until 
the 10th moment. Direct computation of higher moments is not very accurate (lack of 
computing precision in integration). 

Theseresultsprove two points: (i)foraspectrumwith veryfewpeaks. the resultsdo 
not depend on the number of moments (upon a given value which is often small); ( i i )  
the calculation is exact only for a Dirac spectrum ( E +  0). 



Figure 3. ( a )  Response function for the Fibonacci 
chain. Exact value of the position of the peak = 
U.OhO07XTHz: calculated value,= O.UhO08THr. 
( b )  Radius of the circle of convergence of the con- 
tinued fracrion for the Fihonacci chain, 

Table 1. Teatofrhemomcn1,mcthod (melasiic neutronrcatteringapectrum furaFibundcci 
chain of 159X atoms)'. 

I I .,I 
Number of .exact' moments 

. "  ~~ . .. , ,, , , , , _ . " I  ,, ,-,,~-,.~-"..~."~~~,~., ~~ =~ ~~ 
~ ~~ ~~ ~~ 

~~ ~~~ 

1 0 ~ '  5 5 5 
io-" 7 7 7 
I 0 - h  10 10 10 

,,lTv,>.m;,". . . I ) , .  ,I,,, , ,  , , ..," . ,. . , 

.+IQ is the numher of calculated generalized momcnts; e is  the imaginary part of the 
complex variahle I: 'exact' moments are moments recalculated hy integration tliat are i n  
the vicinity of their initii i l value [less than 4%). 

3.5.2. Pol~~thiop~phene. Polythiophene is a conducting polymer after electrochemical 
doping. Its structure is stack of short and long linear chains composed of thienyl cycles 
joined head to tail. The equilibrium configuration and the interatomic potential in a 
chain are well determined (Poussigue and Benoit 1989). So it  is possible to calculate the 
infrared response of such a compound within a simple model of atomic electric charges. 

For a chain with 10 thienyl cycles we calculated the infrared spectrum for two 
polarizations: one along the chain axis Oz, and one along the perpendicular axis Ox in 
the configuration plane. Only the in-plane modes were active in such conditions. Thc 
dimension of the dynamical matrix was 144. So it  was possible to obtain the infrared 
response either by exact diagonalization and determination of linc strengths or  by the 
bpectral momentsmethod. Figure1 (corresponding toOz polarization) showsthe result: 
the spectra are identical. A similar result is obtained for Ox polarization. 
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Figure 4. Calculated infrared spectrum lor undoped polythiophene ( polarizarion along 
Or. axis of the chain) using the spectral moments method and by direct diagonalization. 

Thesecalculations were performedon a Macintosh 11 microcomputer. It was possible 
to perform the moments method up to chains with 100 thienyl cycles (dimension = 
1444); one to two hundred moments were necessary to obtain a stable result. The 
moments computation time is linear with the dimension of the dynamical matrix and 
with the required number of moments. Generally the calculation of the spectrum from 
configuration. potential and charges takes no more than a few minutes. With this 
problem, we have computed up to 600 generalized mnments without any divergence. In 
such a case the problem of the form of the infinite tail is completely unimportant. 

All the results concerning calculated infrared and Raman spectra for doped and 
undoped polythiophene are developed in Poussigue ei al(1991). 

Other examples of applicationscan also be found in Benoit (1987.198Y). Benoit and 
Poussigue (1989) and Benoit e! al(1992). 

1. Correlation fuiictions 

4.1. General form-computing aspects 

In physics, correlation functionsor Green functionsplay a n  important role. For instance, 
these functions are correlated with the probability of findins an electron on the site i at 
timerifthiselectron wasonsitei'at time0. Inmechanics. thesefunctionsgivea measure 
of the extent to which the displacement of the atom on site i isinfluenced by the fact tha t  
the atom on site i' suffered a displacement at time 0. 
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Let us define the Green matrix as 

G(z) = ( z I  - A ) - ' .  (72) 

I t  can easily be shown that the imaginary part of the element ii' of (72) can be written 

The structure of this equation is very similar to equation (2) with a particularchoice for 
the value of the coefficients q,,, andp,,, (relations (3) and (4)): 

q,,, = 6,i,, (ill = 1.2,. . . ,A') (74) 

(75) p ?  = a ,  
tor the right vector and 

(it, = 1 , 2 , .  . . ,A') </I ( I , ,  

for the left vector. 
In (73)s,,.(u) is not a positive function everywhere and thespectral moments method 

does not workdirectly. So wedefine two positive functionss,,(r)ands-..(z), which are 
given by 

s + + ( u j  = -- lim Im ~ ( z ) + +  = C (e,J + e, . ,)(e; t e ; )  6(u - A ~ )  
v 

(76) 
1 .  

i =  I .7 E-O I 

These functions are positive and can be determined by a moments method. Then the 
Green functions are obtained directly from (76) and (77): 

S ( U )  = [ s - + ( u )  - s - . ( L L ) ] / ~ .  (78) 

The method is equivalent to the spectral moments method with a special selection 

In quantum mechanics. we work with the time-dependent position correlation func- 
for the components of the t"" vectors (see equation (35)). 

tion (Maradudin 1969): 

G(i, i ' ,  I) = (ir(i, t )  fi(i', 0)) (79) 
with 

(0) = (1i.Z) Tr(e-PHd) 

where N is the Hamiltonian matrix, @ = I /kT.  Z is the partition function and u(i, t )  is 
the displacement of the ith atom in the Heisenberg representation. 

Evaluation of (79) is not possible as it requires know,ledge of the exact eigenvalues 
and eigenvectors of the system. Using the imaginary part of the Fourier transform of 
(79) circumvents this difficulty: 

where wf and e,, are the frequency and the amplitude of mode j, n ( w )  is the Boltzmann 
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factor and m, is the mass of the atom i .  Computation of C(i, i', w )  presents some 
difficulties and we worked with the following function: 

e e,., 1 
o(i, if. w )  = X 'I -- [6(w - w , )  + 6(w + CO,)] 

I V m ,  V m , .  2w, 

with U = w'and A, = 0;. This function is identically 

G(i, i', w )  
1 

2rrfi[n(w) + I] 
for w > 0. symmetrical and independent of the temperature. It can be shown that, with 
z = U + ic, 

S ( i ,  i'. u) = - (l/x) lim g ( i ,  i ' .  I) (82) 
F 4 I i  

where the elements ofg(i. i ' ,  z )  are given by (il(rl - A ) - ' / ? )  where A is the dynamical 
matrix; relation (82) is now identical to relation (73) and the method is the same as 
developed for (73). 

4.2. Localization ratio 

We observed that, for a given value of U .  the function s , , , (u )  was proportional to the 
wavepacket amplitude of the modes centred on U .  We used the relation (78) to calculate 
the ratio of the second and fourth moments of the spatial distribution of the amplitude. 
Let us define 

V d U )  = C I ~ , ; ( ~ ) l ( C  - r, Y (83) 

(84) 

I' 

+*.,(U) = C Isj,,(u)I(rfl - 
; 

Then the localization ratio is 

Pi(U) = * P 4 , i ( U ) / P 2 . , ( 4 .  (85) 
This ratio gave the magnitude of the extension for the modes that concern atom i .  The 
modes are more localized the smaller the ratio (85). 

4.3. Illustrations 

4.3.1. Chain with solitons. We consider a linear chain with two solitons as defects. The 
dynamical matrix i s  then given by 

= - { k o + ( - l ) ' k l  tanh[(i-/,)/C] tanh[(i-la)/C]} (86) 

a,i, = ai.; and a,; = - air (87) 

with 

i ' # ,  

where 5 = 5 is the width parameter, k,, = 0.125, k ,  = 0.025. I ,  = N / 4  and l2 = 3 N / 4  are 
the centres of solitons (Su etal1980, Benoit 1987). 
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GO,?, 

U 

Figure 5. Locaiirntion ratio for a chain with solituns 

~. 
~~ ; ~ i ~~i i 

Y (Thi) 

Figure 6.  Imaginary part of the Fourier transform 
of the currelation function for the Fibonacci chain 
herwccn two atoms i and i', A i m  i i s  a i  the centre 
of the chain and i' = t 20, 

The defects produce two localized modes centred on the solitons. The eigenvalues 
of these modes are exact for no interactingsolitons at the centre of the spectral density. 
The envelope of these eigenmodes is centred on the defect j and behaves as 

(88) 
We report i n  figure 5 the localization ratio for this model computed from the cor- 

relation functions and from (85). We note that the modes are much localized in the 
centre of the gap. If one computes directly the localization ratio from (86) and (88). one 
obtains practically the same value. Let us remark that the exact value of 5 cannot be 
obtained from integration of (88) but from summation over the discrete sites of the 
lattice. using (88) for the computation of (83) and (X4). 

4.3.2. Fibonaccichain. We consider the same model as used for the illustration for the 
determination of the response function. We report in figure 6 the imaginary part of the 
Fourier transform of the correlation function between tn,o atoms i and i' of a Fibonacci 
chain with 10 947 atoms. The atom i is an atom of the centre of the chain and i' - i = 20. 
This figure shows that the high-frequency vibrations are strongly localized. 

4.3.3. Percohrirtg ncrivorks. Percolating clusters were studied on a two-dimensional 
1115 x 1415 square lattice above the percolation threshold pc  (=0.593) for five values 
of the probability p (Royer er a1 1992), where p is the occupation probability of the 
percolation network. We assume that atoms with mass m are placed at the sites of the 
lattice and are connected by springs. Displacements of the particles are represented by 
a scalar: forimtence. the motion is in an orthogonal direction to the plane of the lattice. 

v i  = qj t l  sech[(i - !,)/5]. 

Then the set of equations of motion for site i is given by 

mu, = - k,, U, (89) 
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Figure 7. The locdlizafion ratio a1 different occupation probability of the percolarion 
nerworkforasquarelattice 1415 X I J 1 5 : ( a ) p = U . 9 . ( b ) p = U . 8 . ( c ) p = U . 7 . ( d ) p = O . h .  

with 

k,i = - k,i 
j # ,  

where j denotes the first neighbouring site of i, k, are force constants between the atoms 
i and j .  which equal 0.125 if i a n d j  are occupied, 0 otherwise. We report in figure 7 the 
localization ratio P,(u) with i chosen at the centre of the percolating cluster. From figure 
7, weobserve that,aspdecreases to the percolation threshold.the highsquare frequency 
modes become more and more localized, rather quickly. Extended and localized modes 
are present at lowest frequencies. 

5. Spectral density 

We will show that the spectral method can be a very powerful tool for the computcdtion 
of the spectral density of a very large matrix. We first recall the method that is usually 
used and is very close to the iterative method. We then present a new method based on 
the deteimination of a random response function. 

From equation (73) after sunmation over i of the diagonal elements, one obtains 
with the helpof (30) and (31) 

N 

(91) 
1 
7r e-o+ i j =  I 

-- lim I m T r C ( r ) = z s s , ( u ) = ~ 6 ( u - A , ) = d ( u )  

and from the relations (12) and (13) with d ( u )  instead of ~ ( L I ) ,  the generalized moments 
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corresponding to the spectral density are 

c',,,, = Tr[Qb(A)I 

I.,,,, = Tr[AQ%)]. 
and 

(92) 

(93) 
Although the relations (92) and (93) are simpler than the relations (32) and (33), 

their use for computing the moments is more difficult because the determination of the 
trace of the 11th power of a matrix A requires knowledge of the full matrix at the power 
it - 1. Even if A is a sparse matrix, A".' is certainly, for n large enough. a full matrix 
and the method cannot be applied for very large systems. 

So. to obtain an approximate value of the spectral density for very large systems, 
two methods have been developed. 

5.1. Local or projected spectral density 

This method is already well known and is very close to the method developed from the 
Lanczos (1950) formalism. The relation (91) can be written 

where sJn) is the local spectral density on the 'state' (or site) i. For a site i given, all the 
p i  and 9k are set to zero except for k = i and now the relations (37) and (38) with the 
helpof (36) can beused. Thespectraldensity isobtained by making thesummationover 
a l l  sites of the local spectral density. However. it  is not very interesting. Usually. the 
computation is made over a few sites that are of particular interest. 

We present a new second method, which is much more practicable. 

5.2. Rundom moments method 

We develop now a method that can be used to determine the density of states (DOS) of 
non-periodic. harmonic systems. We consider now the relation (2) with d, = c,, 

ni 

f ( K )  = 2 C : C , 6 ( K  - A,). (95) 

This relation can be written as 

Now starting from (96). we consider a canonical ensemble of M identical systems 
with dimension N .  and we study the following relation: 

in the limit of M and N going to infinity. Here the 9; components are independent 
random variables distributed according to the continuous bounded probability density 
function P(qp). Thus for all q: ,  P(qp) d9p is the probability that q: lies in the range 
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(9: ,  q: + dq:). P(9)  is identically zero except in a region -0.5 < 9 < 0.5. We inves- 
tigate numerically the class for P(9)  = 1. Then the following relation holds for Ngoing 
to infinitv: 

where sl is a normalization constant. which is equal to 1/12 here. The same rule holds 
also for the components of different systems when M goes to infinity: 

As the distribution is centred on zero, one obtains 
. N  
1 
- Z : 9 : = 0  
N i = ,  

and 

where the prime indicates that i and i' are taken different. 
Starting from these remarks. we will show that it  is possible to determine very simply 

the density of states by a moments technique. With the help of relation (99). (97) 
becomes 

which is exactly the density of states of the system in the limit M +  x .  
However, thedirect useofrelation(97)isnoteasy,aswehavetomakethesummation 

over a great number of systems. But we will see that, if the system is very large and 
homogeneous enough, it is not necessary to sum over many systems of the canonical 
ensemble. 

Usually the elements of the dynamic matrix A take few different values: for instance 
in the scalar model of the Sierpinski gasket, we have only two different values (with the 
diagonal elements); in polyacetylene, with long-range forces. there are only 10 different 
matrix elements. I n  the same way, we can assume that the Green matrix is somewhat 
homogeneous. So we call p the set of elements of G having the same value. The set ,U 
contains N p  elements 

c<,,,; (2) = c, ( 2 )  (103) 
which are all equal 

are equal. One obtains 
We calculate the relation (97) by taking into account that elements of the same set 
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where we have separated the summation over diagonal and off-diagonal elements. If 
the values of A',, are large enough. the relations (98)-(101) hold for every subset p .  
Taking into account (101). we see that the second part of (104) goes to zero. The first 
part gives. taking into account (99). 

and the summation over p gives the trace of G(r) (equation (96)). So one obtains again 
h(u)-+ d(u) for homogeneous systems where the matrix is large enough. Now the 
computation is made over only one or a few systems of the canonical set depending on 
the structure and dimensionofthe matrix. The methodconsistsofcalculatingthe relation 

with 
s 

G " ( z )  = 2 qPG(z),,.qf. (107) 

For every system of the statistical ensemble one uses the method developed for the 
computingof the response function and takes the average over calculated spectrum. For 
a very large homogeneous matrix, i t  is often sufficient to work with only one system. 

To test the accuracy of the method. we calculated the fluctuation ratio /? over every 
point of the spectrum of the Fibonacci chain. 

For a value U ,  of the spectrum we determined 

i.,,=l 

(108) 

and we obtained the mean fluctuation ratio over all the spectrum from the relation 

where N ,  is the number of calculated points. Results are reported in figure 8. We note 
that. asexpectedfora very1argematrix.fewrunsarenecessary toobtainagoodspectral 
density. 

5.3. lllustralions 

5.3.1. Polythiophene. We report in figure 9 the determination of the spectral density 
performed by direct diagonalization, by a statistical average over random sites of the 
local spectral density and by random moments method. The average is taken over 10 
random sites for the local spectral density method and over 10 systems for the random 
moments method. 

The results are shown in figure 9, where the density obtained by diagonalization is a 
fullcurveandthedensityobtained bythemomentsmethodwith localchargesisabroken 
curve. The peaks have the same wavenumbers but there are a few discrepancies between 
themagnitudeofthepeaks. Thisisdue tothefact that 10choicesofasitedonot represent 
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I 

0.15 

0.1 

aa5 

Figure 8. Mean fluctuation ratio over all the spectrum as a iunction of the number M of 
systems for several sizes o f t h e  matrix: 35 (O), hl I (+).4182 (0). 10947 ( A )  and 2178310 
(a) atoms in the Fibonacci chain. The CPU time is reported lor each point. 

perfectly the whole problem with a rather complicated dynamical matrix. The density 
obtained by the moments method with random charges is a dotted curve. Although the 
matrix is not very homogeneous and its rank is small, the result is not bad and much 
better than with the local charges. 

5.3.2. Percolation network. To test the accuracy of the random moments method, we 
first compared the result of the moments technique developed here for the spectral 
density and the exact result obtained for a regular square lattice. We worked on a 
1415 X 1415lattice,andgeneralagreement with theexactresultisobtainedforrr > 0.03 
(U,,, = 1) (figure 10) with only M = 1 (equation (106)). 

To determine the behaviour of the spectral density in the very low-frequency region 
we plotted it on a log-log scale. With the biperiodicity for the infinite tail (54), one 
obtains the result reported in figure 10, which is wrong. The radius of the circle of 
convergence is reported in figure 11 for several values of the number of moments. We 
note that theradiusdecreasesrapidly with the number of moments. However, itdiverges 
strongly in the low-frequency region. This region needs to be studied carefully. The 
coefficients a,, b, and their Fourier transforms are reported in figure 12. The results 
show that a nearly 4-period exists in this system. The spectral density obtained with the 
period m = 4, equation (62), is shown in figure 13. The result agrees very well with the 
exact value for all the spectrum. For the percolating network for p = 0.6, for instance. 
analysis of the data shows that the coefficients a, and b,, present a 12-period. 
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FigureP. Spectral densityoipolythiaphenc chain crlculared either by direct diagonalization 
(full curve). or using the rprctral moments method with random charges (dortcd curve) 
and with local chargces (broken curve). 

1 , , , Figure IO. Log-log plot of the spctral  densily of 
square lattice p = I with l X 0  generalized moments. 
infinite laii with bipcriodicity and F = 0.001. 

The computations were performed from probability p = pc to p = I ,  on the same 
lattice. The size of the percolating clusters that corresponds with this model to the range 
of the dynamic matrix and the computing time are reported below: 

., . *  
IW( 4 

CPU time 
- .,. , , , . , , ,, , , 

, , , , , ., , . . , , . , 

p Size (1) (2) 

0.6 904 068 39 min 39 s 6 min 32 s 
0.7 1378975 10 min 03 s 7 min 15 s 
0.8 1599 331 5 min 41 s 7 min 56 s 
0.9 1602855 3 min 29 s 8 min 41 s 
1 2002225 9 min 21 s 
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Figure 11. The radius of the circle of convergence of a square lattice for several values of 
the number of moments and c = U.01: (a )  1(1 moments. ( 6 )  20 moments. ( c )  hU moments. 

'"1 
1.1 

1.0 

TFbIK) 
0.01 . 

K K 

Figure 12. Values 01 the coefficients U,, and b,, and their Fourier transforms (TF) for the 
square lattice ( p  = 1). 
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Figure 13. Log-log plot 01 the rpecrral density 01 
squarelattice(p = I )  with 17Ugeneralizedmoments. 
Infinite tail with 4-periodicity and f = O.UI, ., . 2  

IWt 01 

CPU time (1) is the time to find the percolating cluster and construct the dynamical 
matrix; CPU time (2) is the time to compute the DOS of the percolating cluster. At 
p = 1, a unique program is followed, since all the sites of the lattice form the cluster. 
I t  is the first time that such large clusters have been studied in dynamics. 

6. Comparison with other methods and conclusions 

To compute the properties of general systems without particular symmetry or special 
dimension. most codes allow one to do the following: 

(i) To compute eigenvalues and eigerivectors of matrices with a rank of about 
1000-2000 taking into account their structure with a classical method (Gaussian 
elimination) with long computing time (Quiming Li ef al 1990). 

(ii) To work with matrices of rank of about 100000 with deflation techniques. 
However. only smaller (or larger) eigenvalues and corresponding eigenvectors can be 
calculated with these methods (Saad 1980, 1981). 

(iii) To determine the spectral density of systems with matrices of rank 300000 
with the resonance method: a random force is applied to atoms and the spectral density 
is obtained directly from the mean energy of atoms (Williams and Maris 1985). This 
method is a method at a given frequency, which means that the probability of missing 
an important mode is not negligible. 

Let us mention also the negative eigenvalues method, which permits one to 
calculate the spectral density of a large system (2000-3000 and perhaps more; Dean 
1960). However. this method is not very practicable in the determination of eigen- 
vectors. The last method is the Lanczos method or its solid-state application. the 
recursive method, which allowed the determination of the projected spectral density 
of large systems (Lanczos 1950, Haydock er al 1972, Haydock 1980). This method is 
equivalent to the moments method in its simplest form. Consider a matrix A and a 
vector u I .  We form new vectors as follows (Arnoldi's method in Saad (1980)): choose 
ut of norm 1 and iterate for j = 1. N 

' J + 1 . ,  = I w J I  D,* l  = ( 1 / / I J + L I ) W , .  

In the basis of us the matrix A is the Jacobi matrix (39) with / I , ,  = a, and 
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hn,,,+l = b;/*. The iteration (110) is equivalent to (36) with a different norm for the 
vector. 

However, in the spectral moments method we are often dealing with more general 
problems than the simple determination of the spectral density. For example, the 
diffusion of light is related to the following expression (Benoit 1987, Benoit eta1 1992): 

1 
~ “ . ~ g n  = a ~ ( j ) a o A  (i) - [WW - U,) + 6 ( ~  + W,)I 

i 2w, 

with (q = 0) 

where the xwo,, are the local susceptibility tensor for the atom i with mass m,. 

now given, for a, b. y .  A fixed, by 
The relation (111) is identical to equation (2) and the generalized moments are 

vnn = C ~;;y . , [Q, (A) l i / [Q,~(A) la ,~o~. , ,  . (113) 
L ’ , /  

In the same way the moments V,,,, are given by 

It is clear that we cannot use directly the recurrence relations (110); as the right and 
left coefficients are different, the moments method and simple recursive method are 
no longer equivalent. However, there is no doubt that after some modifications in the 
Lanczos iterations it  should also be possible to compute the Raman spectra. 

Another example of a problem that cannot be treated by a direct recursive method 
is the determination of the combined frequency distribution or the second-order 
spectra where one determines the generalized moments from a bilinear combination 
of usual moments (42) (Benoit 1987). A great advantage of the moments is that they 
are linear with the density of states. Furthermore, we have seen that, for quantum 
systems, the moments of the response can be obtained directly from the Hamiltonian. 
It is evident that use of the method described in this paper will give interesting results 
in these fields of research. 
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